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Shape of the liquid-vapor coexistence curve for temperature
and density dependent effective interactions

S. Amokrane* and M. Bouaskarne
Groupe de Physique des Milieux Denses, Faculte´ des Sciences et de Technologie, Universite´ Paris XII, 61 Avenue du Ge´néral de Gaulle,
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~Received 29 November 2001; published 24 April 2002!

The asymmetry of the coexistence curve that is observed in several micellar systems is discussed in relation
with the dependence of the effective interaction on temperature and density. Standard results for the diameter
of the coexistence curve in the van der Waals theory are generalized so as to deal with this combined
dependence. The qualitative trends so deduced are assessed by comparison with coexistence curves of Yukawa
fluids computed with integral equation theories. The role of the variables used to plot the coexistence curve and
the nonlinear behavior of its diameter beyond the critical region are discussed in relation with the decrease of
the interaction strength with density. The possibility of using the asymmetry of the coexistence curve as an
indicator of the state dependence of the effective interaction is finally discussed.
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I. INTRODUCTION

Effective interactions that depend on the thermodyna
variables are often considered in the physics of liquids. T
dependence follows either from theoretical consideration
is introduced as a necessity for interpreting experimental
servations. An example is the case of asymmetric sol
solvent mixtures described at the McMillan-Mayer level@1#.
A prototype of this situation is the Deryaguin-Landa
Verwey-Overbeek~DLVO! potential in charge stabilized co
loidal dispersions in which temperature enters the inve
Debye length@2#. State dependent interactions are also int
duced for interpreting scattering measurements in nonio
dispersions such as colloidal silica particles~see, for ex-
ample, Refs.@3–5#! or reverse micelles in organic solven
~see, for example, Refs.@6–9#!. For these systems, the effe
tive interaction fitted to experiment is found to depend
density and/or temperature or even on the pressure~see, for
example, Refs.@10#!. In a different context, one may view
the effective interaction between ions in liquid metals as
longing to this class since it depends on the electronic d
sity. The thermodynamic properties of the system—in p
ticular the liquid vapor coexistence curve, or its equivalen
the effective fluid representation—can be affected by t
dependence up to the qualitative level. To take the exam
of temperature, profound changes with respect to simple
ids are evidenced by the lower consolute points shown
several micellar systems@8#. The strong asymmetry of th
coexistence curve and the unusually low critical volum
fraction also favor an effective interaction that depends
the volume fraction of the dispersed phase. The asymm
of the liquid vapor coexistence curve of liquid metals~see,
for example, Ref.@11#! might also indicate such an effect.

Of course, these well-known features have already b
discussed in the literature. The role of many body forc
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@12,13# or more generally that of state dependent interm
lecular potentials@14# have in particular been underlined i
some theoretical studies. The methods used in th
studies—such as the effective Landau-Ginsburg-Wils
~LGW! Hamiltonian—being specially appropriate to the i
vestigation of the critical behavior@15#, the emphasis was
naturally put on the critical region. A good understanding
some universal features, especially the singularity of the
ameter of the coexistence curve close to the critical po
has been gained in this manner. For a more quantitative s
of specific systems, a more standard approach can, how
be preferable. This is the case in the present work that
actually motivated by some experimental studies of mice
systems. The latter often show transitions similar to
liquid-vapor one in simple fluids@8#. These transitions were
discussed with the help of theoretical coexistence cur
relative to state independent interactions whereas struc
data suggest that one is actually dealing with density dep
dent ones. A clarification of this point seems thus necess
especially when the dependence on density combines w
simultaneous dependence on temperature. The latter ha
deed been considered—separately—more often~see, for ex-
ample, Ref.@16# for a recent study of a temperature depe
dent double Yukawa potential!. The study of Reatto and Ta
@13# in particular dealt with the effect of temperature or de
sity in micellar system but on rather unspecific grounds
more quantitative study seems thus useful. To this end,
oretical methods that enable a quantitative determination
the coexistence curve, including the precise location of
critical point, are required. The LGW Hamiltonian being n
particularly designed for this purpose, we considered the
tegral equations of the theory of liquids@17# in which the
microscopic parameters of the system can be incorpor
more explicitly. Phase diagrams for a variety of state ind
pendent interactions~see, for example, Ref.@18# and refer-
ences therein! have been obtained in this way but the situ
tion is clearly different for state dependent ones.

The main purpose of this work is hence to discuss
effect on the coexistence curve of an effective interaction
the forme(r,T) f (r ). This specific form followed from our
d-
©2002 The American Physical Society01-1
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previous study@19# of the hard core Yukawa fluid as a mod
of the effective interaction in water in oil microemulsion
From this example, we will discuss some aspects of the s
dependence that might be relevant in more general situati
In order to gain a qualitative understanding of the role of t
T-r dependence, we first start with the van der Waals~vdW!
theory. Standard results from the literature@15,20,21#, in-
cluding the effect of ther dependence of the slope of th
diameter of the coexistence curve~see Ref.@12#! are gener-
alized to an interaction strength that depends also onT. Next,
a more quantitative discussion is performed with the help
integral equations methods, especially with that proposed
Duh and Mier-Y-Teran for Yukawa fluids@22#. As shown in
our previous work@19#, it can readily be adapted to study
temperature and density dependent effective interaction
that used to analyze micellar systems in organic solvents@8#.
This method is both accurate and simple enough to perm
discussion well beyond the mean field van der Waals the
It is indeed much simpler than the more accurate modi
hypernetted chain~MHNC! integral equation@23#, in its ref-
erence version~RHNC! @24# that we used for compariso
~the difficulty in using the MHNC was, for instance, pointe
out by Reatto and Tau@13# in their study of the coexistenc
curve of micellar systems!. To this end, this paper is orga
nized as follows. In Sec. II we present the expression of
diameter of the vdW coexistence curve forT-r dependent
potentials together with a brief summary of the method u
to compute the coexistence curve for theT-r Yukawa fluid.
In Sec. III, we show and discuss some representative re
and the paper ends with a conclusion.

II. COEXISTENCE CURVE FOR A TEMPERATURE AND
DENSITY DEPENDENT INTERACTION STRENGTH

A. van der Waals theory

To begin with, we recall here the results relative to t
coexistence curve and its diameter in the vdW theory. T
starting point is the equation of state,

P5
rkBT

~12rb!
2ar2, ~1!

wherea5 1
2 *drfattr(r ) andb5(2p/3)s3 are the usual vdW

parameters,fattr(r ) being the attractive part of the intera
tion potential, beyond the hard-core diameters. The densi-
ties rg and r l of the gas and the liquid at equilibrium at
temperatureT are obtained from the equality of the pressu
and chemical potential of the coexisting phases:

P~r l !5P~rg!; m~r l !5m~rg!. ~2!

The classical behavior of the diameter of the coexiste
curve rd5(rg1r l)/2 is obtained by assuming that the fre
energyF is an analytical function ofT andr near and at the
critical point @21# ~this assumption must of course be reco
sidered in a more rigorous treatment of the critical reg
@21#. See also the model of Widom and Rowlinson@25# for
this point and for a general discussion of the diamet!.
rd(T) near Tc can then be obtained from a double Tayl
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expansion ofF with respect tor 5(r2rc)/rc and t5(T
2Tc)/Tc ~the subscriptc stands for quantities computed
the critical point!. Following Levelt-Sengers’s derivation
@20#, the first term beyondrd5rc is obtained by using in Eq
~2! the expansion of the pressure as

P

Pc
5(

m,n

1

m!

1

n!
pmnr

mtn, ~3!

where

pmn5
1

Pc
rc

mTc
n ]m1n

]rm]Tn
Purc ,Tc

,

and a similar expansion of the chemical potentialm. By as-
suming that the gas and liquid densities at coexistence h
the expansionr l5a1utum1a2utu2m1••• and r g5b1utum

1b2utu2m1••• one obtains from the lowest-order terms
Eq. ~2!: m5 1

2 , a152b1, anda25 b2. The reduced diamete
d5rd /rc is thus found to be linear in temperature:d51
1a2utu , with a slope given by@20#

a25
p21

p30
2

3

5

p11p40

p30
2

1
4

5

p11

p30
. ~4!

From Eq.~1! one finds@20# a25 2
5 . For the forthcoming dis-

cussion, the main point is that Eq.~4! follows from the terms
of ordert5/2 in the expansion of Eqs.~2!.

We consider now the modifications due to the state dep
dence of the interaction, starting first with the dependence
r. In their study of the influence of three-body interactio
on the vdW coexistence curve, Pestaket al. @12# supple-
mented the vdW free energy by a term quadratic in dens
F/N5FvdW/N1qr2. The pressureP5r2@](F/N)/]r# then
reads

P5
rkBT

~12rb!
2ar222qr3, ~5!

whereq is the equivalent ofa for the three-body potential
The influence of the additional term proportional toq can be
seen by expanding all quantities with respect to the sm
parameterx5q/ab, in which case the influence ofq can be
discussed without having to solve Eq.~2!. This amounts to
assuming that the strength of the attractive part of the th
body term is small with respect to the two-body potent
term fattr(r ). The critical density and critical temperatur
are obtained from the condition

]P

]r UTc
5

]2P

]r2U
Tc

50 as rc5
1

3b S 11
2

3
xD

and

Tc5
8a

27b
~11x!,
1-2
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SHAPE OF THE LIQUID-VAPOR COEXISTENCE CURVE . . . PHYSICAL REVIEW E 65 051501
where the prefactors are the pure vdW results (q50). A
similar expansion of Eq.~4! gives the new slope of the di
ameter as@12# a25 2

5 1(22/15)x.
More generally, one can view these modified vdW resu

as pertaining to an attractive interaction of the fo
fattr(r )5e(r) f (r ) with e(r)5eo1e1r. If the linear term
is small with respect to the constant term over a range
densities of the order ofrc,051/3b, that is, e1rc'e1rc,0
!eo , the smallness criterion remainsx!1. These results
then show that within the vdW theory, a decrease of
strength of the attractive part of the effective potential ene
lowers the critical temperature and critical density and
creases the asymmetry of the coexistence curve. These
tures common to several micellar systems have also b
discussed by Reatto and Tau@13# from a lattice gas mode
within the LGW Hamiltonian approach.

We now consider the generalization of these results fo
strength offattr(r ) that depends also on temperature. To t
end, the following model was considered:

e~r,T!5kBT~eo1gT1e1r!. ~6!

This model is a simplified version of the strengthe(r,T) of
the Yukawa interaction@see Eq.~20! below# that we used in
our previous work@19# to analyze structural data and th
coexistence curve of water in oil reverse micelles:

f~r !5H `, r ,s

2e~r,T!exp$2l~r /s21!%/r , r>s,
~7!

wherel is the inverse range~in reduced units! of the attrac-
tive tail @because of the particular dependence onT involved
in the definition~6!, a temperature independentf(r ) is not
recovered by settingg50#. For this model, the vdW equa
tion of state reads

P5
rkBT

~12rb!
2a0~T!r22a1~T!r3, ~8!

wherea0(T)5ckBT(eo1gT) and a1(T)52ckBTe1 with a
mean field constant

c52pS 1

l
1

1

l2D .

It is useful to consider first the pureT dependence, ob
tained by settinge150 in Eq. ~6!. The usual vdW form is
thus recovered but with a temperature dependent attrac
term a0(T). The only independent variable in an isotherm
construction beinge* 5e(T)/kBT, the results at the critica
point have the usual form rc,051/3b, kBTc,0
58a0(Tc,0)/27b and Pc,05a0(Tc,0)/27b2 independently of
the specific form ofe(T) ~the index 0 stands fore150). The
law of corresponding states thus holds, as long ase(r,T) is
independent ofr. In these expressions, the critical tempe
ture is given by

Tc,05
1

g S 27

8

b

c
2eoD . ~9!
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The reduced interaction strength at the critical tempera
e(Tc,0)/kBTc,05eo1gTc,0 is also equal to that for a tempera
ture independent interaction,

e

kBTc
5

27

8

b

c

as will be detailed in the next section. The only nontriv
point concerns the slope of the diameter. Indeed, Eq.~4!,
involves derivatives with respect to the actual temperat
and is a priori dependent on the linearity of Eq.~1! with
respect toT. We examine this point below, together with th
dependence onr.

As shown in Sec. 1 of the Appendix, withe1Þ0, one
obtains at lowest order the critical density and critical te
perature as

rc5
1

3b S 11
2

3

e1

~eo1gTc,0!b
D , ~10!

Tc5Tc,02
e1

gb
, ~11!

with Tc,0 given by Eq.~9!. The influence of the density de
pendence is obvious from Eqs.~10! and~11!, the main point
being the lowering ofrc whene1,0, as withT independent
interactions.

A discussion of the diameter prior to the Maxwell co
struction requires the new expression ofa2. It is shown in
Sec. 2 of the Appendix that~4! giving a2 in terms of the
coefficients pi j keeps the same form, the latter being
course modified. By using Eqs.~10! and~11! in Eq. ~4!, one
can obtain a smallx expansion ofa2 but the resulting expres
sion is too cumbersome to be shown here. A simple re
follows whene150 ~pureT dependence!;

a25
2

5 S 12
8c

27b

eo1gTc,0

Tc,0
D . ~12!

Besides these analytical expressions, one can construc
full coexistence curve and its diameter by solving Eq.~2!.
Rather than proceeding by graphical determination of
common tangent on the free-energy isotherms, one can
range Eq.~2! in the form ~see also Ref.@26#!

P~r l !S 1

rg
2

1

r l
D5E

rg

r l dr

r2
~P2rkBT!2kBTlnS r l

rgD
~13!

that is more suitable for numerical calculations.
The predictions from the mean field vdW theory bei

limited to the qualitative level, two integral equations met
ods that we used for a more quantitative study are brie
described below.
1-3
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B. Coexistence curve from the RHNC and MSA integral
equations

The first one is the well-known RHNC integral equatio
@24# that supplements the Ornstein-Zernike equation@17# for
the total and direct correlation functionsh(r )5g(r )21 and
c(r ),

h~r !2c~r !5rE dr 8h~r 8!c~ ur2r 8u! ~14!

by the closure

g~r !5exp@2f~r !/kBT1h~r !2c~r !2b0~r !#, ~15!

where b0(r ) is the bridge function of a reference syste
here a system of hard spheres, whose diameter is determ
by the optimization condition@24#

E dr @g~r !2g0~r !#
]b0~r !

]s
50. ~16!

The RHNC has been applied to a variety of state indep
dent interactions and has been shown to be very accu
when compared with simulation~see, for example, Refs
@27,18# and references therein!. In this work, we used the
parametrization ofb0(r ) of Malijevsky and Labik@28# and
used the algorithm of Labiket al. @29# for solving Eqs.~14!–
~16!. One major difficulty with the RHNC and related met
ods is the presence of a domain near the critical point wh
numerical convergence is impossible~see, however, Ref
@30# for a possible way to circumvent this problem and R
@31# for improving convergence at high density!. Since the
interaction potentialf(r ) appears explicitly in the closur
~15!, this method can be used as it stands to computeg(r )
for state dependent ones. This holds also for the RHNC
energy that is obtained from the energy route@see Eqs.~8!–
~10! in our previous work@19##. The construction of the
RHNC coexistence curve being rather lengthy, it has b
used here only for checking the results of a much simp
method that we detail now.

The second method is specially designed for the hard-c
Yukawa interaction~7!. It is based on the inverse temperatu
expansion of the free energy~ITEF! in the mean spherica
approximation ~MSA!, that is with the closurec(r .s)
52f(r )/kBT. The original expansion@32# of the excess
free energyD f 5(F2F0)/NkBT with respect to that of hard
spheres, as an infinite series of the reduced strengthe*
5e/kBT, is

D f 52
1

2 (
1

`
Vn

n
~e* !n. ~17!

This was deduced from the analytical solution@33# and was
later summed by Duh and Mier-Y-Teran@22# who extended
the expression of the coefficientsVn . The resulting closed
form of D f involves explicit functions of the packing frac
tion h5p/6rs3 ~see Ref.@22# for the expression of the vari
ous terms!. Our previous work@19# has shown that this form
of D f can be used even with an effective interaction stren
05150
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e that depends onr and T. However, the pressure involve
additional terms related to]e* (r,T)/]r. From the explicit
expression ofP given in Ref.@19#, the coexistence curve i
readily determined by numerical solution of Eq.~13!. These
results are presented and discussed below.

III. RESULTS AND DISCUSSION

A. van der Waals coexistence curve forT-r dependent
interaction strength

Besides the analytical considerations of the previous s
tion, the point we wish to discuss here is the relative infl
ence of the variation ofe(r,T) with T and that withr on the
asymmetry of the vdW coexistence curve. Figure 1 sho
typical results obtained from a numerical solution of Eq.~13!
with the following values of the parameters ine(r,T) of Eq.
~6!: (e0 ,g,e1)5(0.5,0.2,0) and (0.5,0.2,2157) @e1
520.157 is actually 0.3p/6#. These values were chosen s
as to keep up with the lowx expansion discussed above. Th
point to be noted is the role of the energy scale used to
these curves. When the reduced strengthec* /e* is used for
they axis ~part of the plot below the liney51), the coexist-
ence curve for the model~6! with e150 is the same as the
pure vdW one@with a puree(T) variation, the law of corre-
sponding states holds as discussed in Sec. II A#. Note that
ec* /e* equals (eo1gTc,0)/(eo1gT) andT/Tc , respectively,
whereT is the actual temperature in kelvin. On the contra
whenT/Tc is used, the pure vdW curve remains the same
different curves lying above the liney51 are obtained for

FIG. 1. Reduced temperature and reduced inverse interac
strength vs reduced density along the coexistence curve. Data a
the liney51: density independent interaction (e150, squares! and
density dependent one (e1520.157, crosses!. The line is the linear
diameter fore150 with slope given by Eq.~12!. Data below the
line y51: full curves represent coexistence curve and its diam
for temperature independent interaction~the left and righty scales
are equal!. Symbols: inverse reduced interaction strength along
coexistence curve and its diameter; squares (e150, left and right
scales are equal!. Crosses (e1520.157, right scale only!.
1-4
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SHAPE OF THE LIQUID-VAPOR COEXISTENCE CURVE . . . PHYSICAL REVIEW E 65 051501
each value of the ratiog/eo in the lawe(T). Incidentally, the
variation withT embodied in Eq.~6! restores symmetry with
respect to the pure vdW curve. Besides the fact that the u
behavior is recovered when the ‘‘natural’’ variableec* /e* is
used, the MSA results presented below show that this is
the generic behavior whene(T) increases withT. The main
point here is that the coexistence curves have different
pects in the representationsT/Tc2r/rc and ec* /e* 2r/rc ,
but both have the same status. In particular, two conjug
points correspond to a constantT or e* .

The situation is different whene1Þ0, since each value o
e1 /eo gives a different curve even in theec* /e* representa-
tion. This last situation involves indeed two independent
ergy variables@see Eqs.~6!–~8!#. In addition, rg(T) and
r l(T) determined at fixedT do not correspond to the sam
value of ec* /e* because of the density dependence
e(r,T). The curveec* /e* 2r/rc then loses the meaning of
coexistence curve since it does not correspond to the locu
conjugate points as defined in Ref.@25#. The tielines con-
necting such points are given by a linear equatione(r)5c
1dr , with different values ofc and d at eachT @see Eq.
~6!#. The vapor and the liquid branches, nevertheless, for
single continuous curve that actually corresponds to
variation of the reduced interaction strengthec* /e* (r) along
the coexistence curve. One can also draw its varia
ec* /e* (rd) along the diameter d[1/2rc(rg1r l)
5d@e„rd(T),T…#. Because of the weak dependence onr
whene1520.157, the tielines are almost parallel to the a
scissa axis and the curveec* /e* 2r/rc lies below the line
y51. Its maximum is almost indistinguishable from the l
cation of the critical point. As shown below, the situation c
be quite different when an accurate equation of state is u
in conjunction with a differente(r,T) law.

Finally, whene1520.157, the strengthe(r,T) decreases
with density at constantT, the coexistence curve~that is in
the T/Tc scale! is more asymmetrical than whene150. In
view of this, the increased asymmetry associated with
decrease ofe(r,T) with r is not of a distinct nature than tha
discussed analytically in Sec. II A for the puree(r) form.
The converse of this trend—the diameter becoming m
vertical whene(r,T) increases withr—is also natural.

The more interesting point is the long-known observat
that the near linearity of the diameter extends well below
critical point ~the so-called law of rectilinear diameters!. We
are not aware of a general explanation of this law, even in
context of the van der Waals equation. In this case, we fo
that some insight into this question might be gained by c
sidering the situationT!Tc . By neglecting contributions
due torg ~see below!, an explicit expression of the slope o
rd(T)' 1

2 r l(T) for T!Tc can be obtained as follows: a us
ful starting point is Clapeyron’s equation relating the te
perature coefficient (]P/]T)s along the coexistence curve t
the latent heat of evaporationDh ~in Ref. @25#, Widom and
Rowlinson discussed also the behavior ofrg andr l at low T
in their model but from virial expansions!. By using the re-
lation (]Dh/]T)s5Dcp valid at low enoughT @21#, the
equilibrium equation~13!, and the relation specific to th
vdW equation~1!,
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]T D
r

5
1

T
~P1ar2!, ~18!

one gets~see the Appendix! the slope ofr l for T!T
C

as

dr l

dT
.

1

a
~Dcp2kB!.2~kB /a!F12

2akBT

r l
G21

. ~19!

The slope of the density in the vapor is more directly o
tained asdrg /dT.(a/kT2)r lrg . Equation~19! shows that
r l is not linear inT. However, it so happens that while th
magnitude of the second term in the bracket is comparabl
unity, it varies slowly withT. This is in accordance with the
known fact that for several substances,Dcp is almost con-
stant at low enoughT. A linear fit of the liquid branch in the
range 0.4<T* <0.44 (T* [kBT/e) gives, for instance,
dr l /dT* .0.304 whereas Eq.~19! gives 0.3<dr l /dT*
<0.33. Similarly, we find in the vapor branchdrg /dT*
.0.073 whereas (a/kT2)r lrg varies between 0.06 and 0.07
This shows that forT!Tc , the slope of the diameter i
mainly determined bydr l /dT which is roughly constant,
becauseDcp behaves so. This result would hold for oth
equations of state showing a behavior similar to Eq.~18!,
that is, those keeping the quadratic and temperature inde
dent mean field term, but with different hard sphere con
butions. Even so, a more physical understanding of this n
linearity of the diameter requires an explanation of the co
bination of the thermal and elastic coefficients that leads
this near constancy ofDcp at low enoughT.

B. Coexistence curve in the MSA

Since the vdW treatment is not expected to be quant
tively accurate, we examine now the results obtained fr
the MSA . We first considered the variation ofe(r,T) with r
and T separately. Figure 2 shows the coexistence curve
e(r)5eo1e1r. For e150, comparison with simulation dat
is possible. The agreement in absolute variables is satis
tory, except near the critical point@22#: the critical density is
very good,rc* [rcs

3.0.316~to be compared with 0.313 by
simulation! but the critical temperature is too high,Tc*
.1.238 while simulation@27# givesTc* .1.177. Beyond the
critical point, the MSA is almost as accurate as the RHN
@27# @see also Fig. 3~a!#. The inaccuracy of the vdW critica
valuesrc* 51/2p.0.16 andTc* 5 8

27 c.0.77 is evident~these
values correspond to a Yukawa inverse rangel51.8). In
reduced variables@Fig. 2~b!#, the overestimation of the criti-
cal temperature by the MSA worsens the agreement w
simulation but the diameter agrees with simulations be
than the vdW one. The MSA diameter forl51.8 is in very
good agreement with the experimental one@34#, but this
seems fortuitous. The slope of the diameter depends ind
slightly on l, even in the unitsT/Tc2r/rc ~by plotting the
simulation data of Lomba and Almarza in reduced variab
we also found that the diameter forl53 is clearly distinct
from those forl54 andl51.8). It is also to be mentioned
that according to Duh and Mier-y-Teran@22#, their formula-
1-5
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FIG. 2. ~a! Coexistence curve in the
temperature-density plane of the Yukawa pote
tial with l51.8. Full lines: coexistence curve an
its diameter from the MSA@Eq. ~17!#. Symbols:
simulation data@27#. e independent ofT and r.
~b! Coexistence curves and diameters in reduc
variables. Full curves and squares: same as
Fig. 2~a!. Short dashes: MSA for density depen
dent interaction (e1520.157). Black circles, ex-
perimental diameter@34#. Long dashes: van de
Waals (e150). Dots: van der Waals (e1

520.157). Crosses:diameter for the sticky
hard-sphere model@38#.
x
nc
a

tiv

o

ical
n-
nifi-
.
a-
tion of the MSA being based on the energy route, it is e
pected to yield classical mean-field critical exponents. Si
in this work we were not particularly interested in the critic
behavior, we did not consider this aspect further.

The main point now is that the MSA curve with (eo ,e1)
5(0.5,20.157) is clearly more asymmetrical than whene1
equals 0. The vdW predictions are correct at the qualita
level but the change predicted frome150 to e1520.157 is
not quantitatively significant. The last value corresponds t
05150
-
e

l

e

a

decrease ofe(r) of about 25% fromr50 to r52.5rc . This
moderate variation might thus correspond to real phys
situations. In contrast with the vdW treatment, the MSA ge
erates in these conditions a diameter that departs sig
cantly from the experimental one for ordinary substances

We now consider the additional variation with temper
ture on the example of the effective interaction in AOT~so-
dium bis di-ethylhexyl sulfosuccinate! reverse micelles. Fig-
ure 3 shows the coexistence curve obtained withe(r,T)
1-6
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SHAPE OF THE LIQUID-VAPOR COEXISTENCE CURVE . . . PHYSICAL REVIEW E 65 051501
computed from

e* ~h,T!5a01a1T1a2T21b0exp~2b1h! ~20!

and an inverse range parameterl51.2. The other parameter
were determined by fitting experimental data for the lo
angle structure factorS(q) by the equation

S21~q50!5
1

kBT

]P

]rU
T

.

The result obtained by ignoring the density dependence
Eq. ~20! ~parameters of Chenet al. @35# with l50.73) is
given for comparison. In order to judge the accuracy of

FIG. 3. ~a! Coexistence curve for reverse micelles in the redu
temperature-packing fraction plane. Black circles: experime
data for the AOT water in decane system@8#. Full curve: MSA with
e* (h,T) from Eq. ~20! andl51.2 ~see Ref.@19# for the values of
the coefficients!. Crosses: RHNC points, same law. Dashed cur
MSA for l50.73 ande* (h,T) independent ofh @b050 in Eq.
~20!#. ~b! Theoretical coexistence curves and diameter for reve
micelles in reduced variables. Curves: same as in Fig. 3~a!. Sym-
bols show the diameters: empty circles represent density inde
dent e(b050), black circles represent density dependente(b0

Þ0).
05150
-

in

e

MSA-ITEF formalism, two RHNC coexistence points a
also shown. The most important observation from this fig
is the strong asymmetry of the coexistence curve. This
better evidenced in reduced variables@Fig. 3~b!# by the cur-
vature of the diameter, even close to the critical point.
should be mentioned here that the packing fraction was ta
as equal to the actual volume fraction of the micelles.
different conversion of the latter into packing fractions d
termined form a molecular model modifies the value of t
coefficients in Eq.~20! but do not suppress ther dependence
that generates the asymmetry. The extreme caseb050
~circles in Fig. 3! indeed shows that the experimental poin
are not accurately reproduced when the strength is inde
dent ofr ~the structural data are then not at all reproduced
see Fig. 3 in Ref.@19#!. This means that this dependence
necessary, even though the actual values of the paramete
Eq. ~20! or that ofl might be affected by a different defini
tion of h. This impact of the dependence withr ~compare
with the caseb050) is here much more pronounced tha
that predicted by the vdW equation. Note that the variable
the y axis in Fig. 3 isT/Tc . In view of the previous discus
sion, we show in Fig. 4 the same curves together with t
with l50.73 ande independent ofT ~recall that this is iden-
tical to the curve withe* (T)5a01a1T1a2T2 plotted ver-
susec* /e* ). Whereas the temperature was found to rest
symmetry within the vdW equation, we observe here that
curve withb050 seems also strongly asymmetrical. This
clearly a consequence of a particular choice of variables
celcius temperatures were used instead, as in some ex
mental studies, the diameter would not show such
‘‘anomalous’’ slope. The inverse reduced interaction stren
ec* /e* for b0Þ0 is shown againsth/hc separately in Fig. 5.

d
l

:

e

n-

FIG. 4. Theoretical coexistence curves and diameter for rev
micelles in alternative scales. Curves above the liney51: sameas
those in Fig. 3. The curve below the liney51 is another represen
tation of that for density independente(b050,l50.73). With the
right scale, it is the transform of the dashed curve above the
y51. With the left scale, thesamecurve can be viewed as that fo
the pure Yukawa potential (e independent ofT).
1-7
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This curve shows that the effective interaction strength al
the coexistence curvee* (r) has a more ‘‘symmetrical’’
variation than the corresponding temperatureT* (r) ~the
maximum value ofec* /e* abovey51 at about 2rc does not
correspond to the critical point!. This purely geometrica
‘‘symmetry’’ is distinct from that usually considered@25# in
the theory of the liquid vapor transition. It is also differe
from that arising from an appropriate choice of the ord
parameter on thex axis ~see, for example, Ref.@36# for a
study of the coexistence curve of binary mixtures!.

To conclude this section, it is useful to stress that a r
able assessment of the influence of the state dependen
the interaction on the coexistence curve requires a s
ciently accurate equation of state. The comparison m
above of the vdW and MSA results clearly illustrated this.
a further piece of evidence of possible artifacts of appro
mate equations of state, we may take the example of Bax
sticky potential@37# treated in the Percus-Yevick~PY! ap-
proximation. The latter is known to exhibit a strong inco
sistency between the various routes to the thermodyna
properties, especially the virial-compressibility incons
tency. In contrast with the virial route that does not pred
phase transition, the compressibility route predicts coex
ence, with a strong asymmetry between the vapor and
liquid branch@38# @the crosses in Fig. 2~b! correspond tothe
diameter#. This feature has been invoked by Chenet al. @8#
to explain the asymmetry of the coexistence curve of A
reverse micelles. On the other hand, Barboy and Tenne@39#
have shown that the same model, still treated in the PY

FIG. 5. Inverse reduced interaction strength for reverse mice
along the coexistence curve. Dashed lines and circles: same
Fig. 4, r-independente(b050,l50.73). The curve can also b
viewed as the coexistence curve~the tielines, not shown, are para
lel to the x axis!. r-dependente: short dashes with dots represe
vapor branch, full curve with dots represents liquid branch. T
critical point is indicated by the arrow. The squares showec* /e*
along the diameter. The tielines connecting the coexistence poin
fixed T are given by Eq.~20!.
05150
g

r

i-
of

fi-
e

i-
r’s

ic
-
t
t-
he

T

p-

proximation leads to a much more standard behavior of
diameter when the energy or the zero separation theo
routes are used to obtain the coexistence curve. The MS
also not thermodynamically self-consistent, especially
strong and short-range attractions@40#! ~large values ofl
ande). In the present case,l51.2 and the maximum value
of e is lower thankBT. The good agreement with the RHN
and with simulations whenl51.8 suggests that this incon
sistency is not, in our case, a severe limitation. In other s
ations, this density-related asymmetry could be investiga
by using other integral equations, preferably thermodyna
cally self-consistent~see, for instance, the comparison of t
performances of various integral equations for the hard-c
Yukawa fluid withl1.8 in Ref.@41#!.

IV. CONCLUDING REMARKS

This paper is concerned with the asymmetry of the liqu
vapor coexistence curve for a fluid with an effective intera
tion strength that depends on the temperature and the den
With a pure temperature dependencee(T), the representa-
tions of the coexistence curve in the temperature-density
interaction strength-density planes are equivalent. The la
however, shows that the strong asymmetry that can a
from specific forms of the lawe(T) in the temperature-
density plane is not an intrinsic property of the coexisten
curve. With a pure density dependence, the qualitative tre
predicted from the van der Waals theory are correct but
magnitude of the main effects—change of the critical dens
and slope of the diameter—are underestimated in comp
son with the results of an accurate integral equation the
Whene depends simultaneously onT andr, the asymmetry
of the coexistence curve in theT-r plane due to the density
dependence reveals through the curvature of the diam
even close to the critical point. The necessity to use a su
ciently accurate equation of state has also been underline
moderate decrease of the interactions strength was ind
detectable in the MSA treatment but not in the van der Wa
one. Whether the ensuing asymmetry of the coexiste
curve could be used as a signature of the density depend
of the effective potential requires clarification of the role
other sources of asymmetry. Indeed, in this work, only
interaction strength was allowed to depend on tempera
and/or density. Similar investigation of the influence of t
other characteristics of the interaction potential should
made before assigning with confidence the asymmetry of
experimental curves to a precise dependence of the effec
interaction on the thermodynamic variables.

APPENDIX

1. van der Waals critical values withe„r,T…

When e1Þ0, there are two independent energy para
etersa0(T)/kBT and a1(T)/kBT so the standard results fo
rc and Tc must be reconsidered. Since the equations de
mining the critical point cannot be solved explicitly for arb
trary values of the parameters in Eq.~6!, we resort to the
small x expansion. We thus require the density depend
term e1r to be smaller than the constant oneeo1gT. Since

s
in
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the critical density withe150 is insensitive to the tempera
ture dependence, the smallness criterion becomesx
5a1(T)b21/a0(T)!1 or e1 /(eo1gTc)b!1 ~this will hold
also for T.Tc , for g.0!. One easily verifies that the ex
pansion ofrc can be obtained from the result given in th
text by simply replacingx by its new expression

rc5
1

3b S 11
2

3

e1

~eo1gTc!b
D .

This is fed into the equation

]P

]rUuTc
50

that reads kBTc5(12brc)
2@2a0(Tc)rc23a1(Tc)rc

2#, to
obtain the newTc as a function ofrc . To lowest order, the
two equations can be solved explicitly@Eqs.~10!–~11! in the
main text#.

2. Slope of the van der Waals diameter withe„r,T…

We examine here the influence of nonlinear terms inT in
the expansions ofP and m that give Eq.~4! for a2 ~the
dependence onr does not affect the order of the expansio!.
At lowest order, an additional term12 p12(a12b1)tm12 con-
tributes to the equality of the pressures~with a similar con-
tribution in the equation form). Since terms with lower ex-
ponents oft ~those involving the first derivativepi1 with
respect toT) were already included in the expansion of E
~2!, the results@20# m5 1

2 , a152b1 , a25b2 are unchanged
The sole modification is thus an extra terma1(p12
2m12)t

5/2 in the final equation determininga2. From the
expansion of the free energy and using the relationsP
5r2(](F/N)/]r) and m5F/N1P/r, one findsp1252F12
1F225m12. Therefore, Eq.~4!, giving a2 in terms of the
coefficientspi j , keeps the same form.

3. Clapeyron’s equation

Clapeyron’s equation

S ]P

]T D
s

5
Dh

T~vg2v l !
~A1!
,

r

, J

S.

05150
.

relates]P/]T along the coexistence curve to the latent h
of evaporationDh @in Eq. ~A1! vg51/rg , v l51/r l#. Per-
forming the differentiation with the help of the equilibrium
equation~13! one gets

S ]P

]T D
s
S 1

rg
2

1

r l
D5E

rg

r l dr

r2 S ]P

]T D
r

. ~A2!

Inserting (]P/]T)r5(1/T) (P1ar2) in the right-hand
side of Eq. ~A2! and using Eq. ~13!, one gets
(1/T) @P$(1/rg)2(1/r l)%1a(r l2rg)#. Equations~A1! then
give

Dh

~r l2rg!
r lrg5P1ar lrg . ~A3!

Well belowTc , one may neglectrg in the denominator of
the left-hand side~lhs! of Eq. ~A3!, and approximate the
pressure by that of the perfect gas:P.rgkBT, giving Dh
.kBT1ar l . Using the relation (]Dh/]T)s5Dcp valid at
T!Tc one gets

dr l

dT
5

1

a
~Dcp2kB!. ~A4!

The change in heat capacity at constantP, Dcp5cp,g2cp,l
is easily obtained from the relations Cp2Cv
52T(]P/]T)V

2/(]P/]V)T and cv
vdW5 3

2 kB . cp,g5cv,g1kB

andcp,l5cv,l1kB /@12(2a/kBT)r l(12r lb)2# thus give

dr l

dT
.2~kB /a!F12

2a

kBT
r l~12r lb!2G21

. ~A5!

The equality of the pressures at equilibriumPg.rgkBT
5Pl shows also that 1@rg /r l.1/(12r lb)2(a/kBT)r l ,
which leads to Eq.~19! for dr l /dT. In its turn drg /dT
.(a/kT2)r lrg follows by putting P.rgkBT in the lhs of
Eq. ~A2!.
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